[WIPz] CBash (Alpha)

Post » Wed Sep 01, 2010 7:04 pm

CBash
Version: 0.4a
By: Waruddar
Main Download: http://www.tesnexus.com/downloads/file.php?id=30154
Dev Site: https://sourceforge.net/projects/cbash/

Welcome to the fourth alpha release of CBash.

Background:
Wrye Bash is slow at reading esm/esp files. Really slow. So slow, that even though it fully supports CELL/WRLD/DIAL records, it does almost nothing with them because it can take ~15 minutes to load them all into memory and write them back out. Even with it sticking to the simpler records, it can easily take a couple minutes to build a Bashed Patch. That's with psyco. Without it, it takes even longer.

This isn't a problem with Wrye's code so much as it is a limitation of Python. Python is great to script with, but it does have a high amount of overhead.

TES4Edit is much faster at reading esm/esp files, but it has a limited ability to automate mod editing.

Introduction:
Luckily, Python supports the loading of foreign DLLs. So, I've written a C/C++ DLL to handle the loading and writing of esm/esp files. I then exported functions for accessing / setting records, and wrote a Python interface to hide most of the uglier details.

What does this mean? When CBash is finished, it can act as a replacement for most of the functionality in bosh.py, Bash's file handler. Bashed Patches will be created faster, will be able to handle more advanced tweaks, and be able to merge any mod into the patch.

Unrelated to Bash, and more generally useful to mod creators, the interface will allow easy and fast automated mod editing.

Trivial example: Reweigh any ingredient that weighs more than 3.0 by cutting its weight in half.
Current = Collection()srcMod = Current.addMod("Oblivion.esm")newMod = Current.addMod("ReweighedIngredients.esp", True)Current.load([eINGR], LoadMasters=True, FullLoad=True)for record in srcMod.INGR:	if(record.weight > 3.0):		newRecord = record.CopyAsOverride(newMod)		newRecord.weight = newRecord.weight / 2.0newMod.safeSave()

Additionally, the final version will fully support FO3.

There is also a potential of linking this DLL to a OBSE plugin, and enabling the creation of mod files while in game. But, I'm not going to even think about this until v1.0 is released at the earliest.

What I'd like:
Feel free to play around with it. All Oblivion records are supported. Examples on usage can be gleaned from the Test.py file.
Whenever Bash makes a regular release, I will post which functions have been converted to use CBash. Please test them with and without CBash and give me feedback.

Instructions:
Unzip CBash.dll, Test.py, and CBashInterface.py into any directory. Ignore the Source folder unless you're curious.
Place a copy of Oblivion.esm into the same directory.
If you run Test.py, nothing will happen. Various tests are available if you uncomment the test of interest at the bottom of the file.
If you want to play around, you can use Test.py as a template for your own file.

Current Performance:
First run: Fully load all records: 14s
First run: Minimally load all records: 5s

Subsequent runs: Fully load all records: 4.1s
Subsequent runs: Minimally load all records: 1.3s

What's done:
All record types can be read, copied as new or override, new records created, written, and have been fully exposed to Python.

What isn't done:
  • Setting/Changing a mod's filename after it has been added.
  • Deleting subrecords
  • Ability to filter records by criteria (Get all records with an eid that contains a string, has a specific weight or position, etc)
  • Clean master list of unreferenced masters
  • Sort master list by load order
  • DeepCopy records (including all referenced records that aren't in an existing master)
  • Additional safety / sanity checks
  • Optimization
  • FO3 Record support

Roadmap:
v0.1a - Initial Alpha Release
v0.2a - Expose remaining simple records to Python
v0.3a - Support and expose CELL/WRLD/DIAL records and subrecords
v0.4a - Hook CBash into Wrye Bash

v0.5b - Initial Beta Release - Maintenence (fix/implement all known issues)
v0.5.1b ... v0.5.XXb - Maintenence releases as needed
v0.6b - Support and expose FO3 records
v1.0 - Initial Full Release
User avatar
Katey Meyer
 
Posts: 3464
Joined: Sat Dec 30, 2006 10:14 pm

Post » Wed Sep 01, 2010 7:36 pm

So... if I, as a simple mod user, decide to use this, will my bashed patch now take less than six minutes to create?
User avatar
Steven Hardman
 
Posts: 3323
Joined: Sun Jun 10, 2007 5:12 pm

Post » Thu Sep 02, 2010 1:03 am

Oooooh, shiny!

What a great idea. Thanks for working this up. I'll be happy to run a test for you and post results, but not until tomorrow night most likely.

I'm excited to see this come along!

gothemasticator
User avatar
Ricky Rayner
 
Posts: 3339
Joined: Fri Jul 13, 2007 2:13 am

Post » Wed Sep 01, 2010 10:24 pm

What now? I copied Oblivion.esm to the folder, ran "test.py", it did some stuff. But all that was left was a testAll.esp and some backups of it. Your instructions are not clear to me. I don't know much about command prompts.
User avatar
matt white
 
Posts: 3444
Joined: Fri Jul 27, 2007 2:43 pm

Post » Wed Sep 01, 2010 11:37 pm

So... if I, as a simple mod user, decide to use this, will my bashed patch now take less than six minutes to create?

When 0.6b is released for testing, yes. Right now, it won't do anything for your bashed patch.
Oooooh, shiny!

What a great idea. Thanks for working this up. I'll be happy to run a test for you and post results, but not until tomorrow night most likely.

I'm excited to see this come along!

gothemasticator

Thanks :)
What now? I copied Oblivion.esm to the folder, ran "test.py", it did some stuff. But all that was left was a testAll.esp and some backups of it. Your instructions are not clear to me.

When you run Test.py from the command prompt, you need to run "Test.py >Profile.txt", not just "Test.py". This causes all of the text generated by the program to go into Profile.txt so that you can open Profile.txt and easily copy the results.

The TestAll.esp and backups may be safely deleted, or you can open it in TES4Edit to verify that it was written correctly. The CS will also open it, but will complain about duplicate editor IDs.
User avatar
Add Me
 
Posts: 3486
Joined: Thu Jul 05, 2007 8:21 am

Post » Wed Sep 01, 2010 3:41 pm

Looking forward to this! Keep up the good work :foodndrink:
User avatar
Kelsey Anna Farley
 
Posts: 3433
Joined: Fri Jun 30, 2006 10:33 pm

Post » Wed Sep 01, 2010 10:35 am

When you run Test.py from the command prompt, you need to run "Test.py >Profile.txt", not just "Test.py". This causes all of the text generated by the program to go into Profile.txt so that you can open Profile.txt and easily copy the results.

The TestAll.esp and backups may be safely deleted, or you can open it in TES4Edit to verify that it was written correctly. The CS will also open it, but will complain about duplicate editor IDs.


So how do I do that exactly? I got text.py to run by double-clicking on it.
User avatar
Luis Longoria
 
Posts: 3323
Joined: Fri Sep 07, 2007 1:21 am

Post » Wed Sep 01, 2010 11:58 am

Looking forward to this! Keep up the good work :foodndrink:

Appreciate the support :hehe:
So how do I do that exactly? I got text.py to run by double-clicking on it.

  • Click on the Start menu
  • Click "Run..."
  • In the "Run" dialog box that opens, type in "cmd" without the quotation marks, and click Ok
  • Open the folder with Test.py in it, and click on the address bar.
    • Copy the entire address.

  • At the prompt, type "cd "" without the outside quotation marks, right click and select paste, and then type """ without the quotation marks.
    • There should be two quotation marks in what you typed, one before and one after what you pasted in.
    • Hit Enter.

  • If the prompt didn't change, the folder is probably on a different drive.
    • Look at the first two characters in the address you copied.
    • It should be C: or D: or E:, etc.
    • Type those first two characters, and hit Enter.

  • The prompt should now be at the folder location (look to the left of the blinking underscore and >)
  • If it is, type "Test.py >Profile.txt" without the quotation marks and then press enter.
  • When it is done, you'll find a Profile.txt in the folder, and you can simply copy/paste the entire contents into this thread.


Example command prompt:
Microsoft Windows [Version 6.1.7600]Copyright (c) 2009 Microsoft Corporation.  All rights reserved.C:\Windows\system32>cd "E:\Games\Bethesda Softworks\Oblivion\Mopy"C:\Windows\system32>E:E:\Games\Bethesda Softworks\Oblivion\Mopy>Test.py >Profile.txt

User avatar
Stefanny Cardona
 
Posts: 3352
Joined: Tue Dec 19, 2006 8:08 pm

Post » Wed Sep 01, 2010 3:08 pm

This is awesome! Good luck!
User avatar
C.L.U.T.C.H
 
Posts: 3385
Joined: Tue Aug 14, 2007 6:23 pm

Post » Wed Sep 01, 2010 11:45 pm

this sounds absolutely brilliant.
User avatar
sam
 
Posts: 3386
Joined: Sat Jan 27, 2007 2:44 pm

Post » Wed Sep 01, 2010 4:26 pm

Profile.txt contents:

ReadWriteAllALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingMin: 1.71112620611 Avg: 1.76111161456LoadMin: 0.0359228460577 Avg: 0.0380751986754Min: 0.0358733116047 Avg: 0.0375930172549Min: 0.0367200051608 Avg: 0.0379673710031Min: 0.0362004693869 Avg: 0.037196722432Min: 0.0359723805106 Avg: 0.0372343609364Min: 0.0362215887273 Avg: 0.0373864240272Min: 0.0365929051304 Avg: 0.037824508265Min: 0.0361374953537 Avg: 0.0372379205053Min: 0.0362108370631 Avg: 0.0373785561129Min: 0.0500294134814 Avg: 0.051237896698Min: 0.0362576836 Avg: 0.0374108955829Min: 0.0378028513413 Avg: 0.0388363128243Min: 0.0377502449844 Avg: 0.0387823778688Min: 0.0361252077375 Avg: 0.0370857998163Min: 0.0374503503507 Avg: 0.0379397507457Min: 0.0364923002725 Avg: 0.0372170046785Min: 0.0379030722113 Avg: 0.0390741127573Min: 0.0393457151546 Avg: 0.0404778001173Min: 0.0374046557778 Avg: 0.0382352679161Min: 0.0400042545871 Avg: 0.0406127066239Min: 0.0368935677401 Avg: 0.0374996505709Min: 0.0369784290897 Avg: 0.0376418528497Min: 0.0368724483997 Avg: 0.0376939446627Min: 0.0368532489993 Avg: 0.0375382029668Min: 0.0403413960575 Avg: 0.0414070357355Min: 0.0360503300761 Avg: 0.0371556856336Min: 0.0362296524755 Avg: 0.0373986002869Min: 0.0365825374542 Avg: 0.0371733222028Min: 0.0364381579635 Avg: 0.0371653314124Min: 0.037731429572 Avg: 0.0383342907434Min: 0.036414350707 Avg: 0.0373365094261Min: 0.0963621744166 Avg: 0.0977283960667Min: 0.0453343921163 Avg: 0.0463815696508Min: 0.0378447060341 Avg: 0.0386718968393Min: 0.0362154449192 Avg: 0.0370392451103Min: 0.0368432653111 Avg: 0.0375000767976Min: 0.0365848413823 Avg: 0.0375922953574Min: 0.036044570256 Avg: 0.0371692749692Min: 0.0366086486387 Avg: 0.0374109224621Min: 0.0420474547739 Avg: 0.0428483846393Min: 0.0360510980521 Avg: 0.0372257596051Min: 0.036097176613 Avg: 0.037016712694Min: 0.0371688871413 Avg: 0.0382180153349Min: 0.0456795973348 Avg: 0.046501216474Min: 0.0372464527188 Avg: 0.0382612677441Min: 0.0414941280554 Avg: 0.042118242963Min: 0.0364876924164 Avg: 0.0372605412388Min: 0.0365959770344 Avg: 0.0374882730063Min: 0.0370252756266 Avg: 0.0376132572628Min: 0.0364496776037 Avg: 0.0370173078754Min: 0.0362273485474 Avg: 0.0372222768338Min: 0.0362607555041 Avg: 0.0372902580707OverrideMin: 0.0370068442022 Avg: 0.0376765461661Min: 0.0368313616829 Avg: 0.0377815438468Min: 0.0406558822355 Avg: 0.0415714094817Min: 0.0365360749053 Avg: 0.0376481617726Min: 0.0363456168537 Avg: 0.037304592343Min: 0.0367914269301 Avg: 0.0375840895337Min: 0.0476521437282 Avg: 0.0485798664336Min: 0.0363736479783 Avg: 0.0372099392992Min: 0.0373693288811 Avg: 0.038328765156Min: 0.0961125822118 Avg: 0.0977189077231Min: 0.0378047712814 Avg: 0.0388809091914Min: 0.0555761202466 Avg: 0.0567269630235Min: 0.0497110874234 Avg: 0.0504289491631Min: 0.0364247183832 Avg: 0.0373000881637Min: 0.0503408277552 Avg: 0.0513591562708Min: 0.0363951513066 Avg: 0.0372083611085Min: 0.0493724100009 Avg: 0.0500954632585Min: 0.0517070570852 Avg: 0.0527594568566Min: 0.0429144996943 Avg: 0.0440951361007Min: 0.0501046751308 Avg: 0.0514294990339Min: 0.0407499592973 Avg: 0.0418683051691Min: 0.0383738415081 Avg: 0.0392795501811Min: 0.0554782033047 Avg: 0.0568160904799Min: 0.0397158795936 Avg: 0.0406258082948Min: 0.211780521671 Avg: 0.213651641472Min: 0.0368520970353 Avg: 0.0378291084413Min: 0.0374515023147 Avg: 0.0381903374794Min: 0.0373992799457 Avg: 0.0383637695028Min: 0.0377740522408 Avg: 0.0386376297495Min: 0.0522338886312 Avg: 0.0531387486906Min: 0.0370164439024 Avg: 0.0380416918819Min: 0.149219659572 Avg: 0.151115872989Min: 0.0594524791802 Avg: 0.0608147611134Min: 0.0445172656367 Avg: 0.0453003477395Min: 0.0365402987734 Avg: 0.0373487740031Min: 0.0400672286203 Avg: 0.0411168790376Min: 0.0384621587499 Avg: 0.039481750586Min: 0.0363010742449 Avg: 0.0372823171987Min: 0.0377164540398 Avg: 0.0386069145488Min: 0.060233894775 Avg: 0.0610556291106Min: 0.0364965241405 Avg: 0.0374717192833Min: 0.0364231824312 Avg: 0.0374302101797Min: 0.039522733626 Avg: 0.0406544115614Min: 0.057178886189 Avg: 0.05839619729Min: 0.0431137894701 Avg: 0.0442627891046Min: 0.278839803275 Avg: 0.280603164522Min: 0.0372979071117 Avg: 0.0378633947305Min: 0.0393533949148 Avg: 0.0398148793817Min: 0.038836931045 Avg: 0.039845287392Min: 0.036676614516 Avg: 0.0375823231889Min: 0.0363805597624 Avg: 0.0373417700618Min: 0.036733060753 Avg: 0.0376922589554NewMin: 0.036678534456 Avg: 0.0378093176994Min: 0.036834433587 Avg: 0.0378015342625Min: 0.0403748030142 Avg: 0.0412689190891Min: 0.0366566471396 Avg: 0.0378488646243Min: 0.0362657473482 Avg: 0.0373416241464Min: 0.0366351438112 Avg: 0.0376703025211Min: 0.0454891392832 Avg: 0.046155258639Min: 0.0362707391922 Avg: 0.0372623728616Min: 0.0374541902307 Avg: 0.0383432261444Min: 0.0861661408591 Avg: 0.0874001170395Min: 0.0381284731716 Avg: 0.0386120023899Min: 0.0516655863804 Avg: 0.0526877432564Min: 0.0473875759913 Avg: 0.0482454666376Min: 0.0361616865982 Avg: 0.0373251702603Min: 0.0476459999201 Avg: 0.0487302591765Min: 0.0362645953842 Avg: 0.0374317768507Min: 0.0471552632469 Avg: 0.0483565735675Min: 0.0507029284461 Avg: 0.0516367642406Min: 0.0423204702471 Avg: 0.0433829804228Min: 0.0487783805536 Avg: 0.0496258766446Min: 0.0402000884709 Avg: 0.0411973475644Min: 0.0384863499943 Avg: 0.0391916169274Min: 0.0508043012801 Avg: 0.0517284490571Min: 0.0395488448105 Avg: 0.0403698265296Min: 0.144910546154 Avg: 0.146649481923Min: 0.0367872030621 Avg: 0.03789382578Min: 0.0372368530186 Avg: 0.0382919560656Min: 0.0373086587759 Avg: 0.0383171495188Min: 0.0374783814751 Avg: 0.0384723958701Min: 0.0488206192344 Avg: 0.0501896516768Min: 0.0370022363462 Avg: 0.0379707731368Min: 0.137559479742 Avg: 0.139370071514Min: 0.0577149334472 Avg: 0.0591353588445Min: 0.0436724920207 Avg: 0.0444216526229Min: 0.0363498407218 Avg: 0.037470287008Min: 0.040103707481 Avg: 0.0408405459081Min: 0.0386146019888 Avg: 0.0395693152111Min: 0.0364339340954 Avg: 0.0372899470404Min: 0.0378769610268 Avg: 0.0386317700926Min: 0.05638671893 Avg: 0.0577569033364Min: 0.0365337709773 Avg: 0.037588658991Min: 0.0362726591324 Avg: 0.0373389592696Min: 0.0394259686482 Avg: 0.0407681564889Min: 0.056913166488 Avg: 0.0583130216477Min: 0.0422582641899 Avg: 0.0433805996971Min: 0.183044395157 Avg: 0.184794712332Min: 0.0370790339476 Avg: 0.0380287054075Min: 0.0389225603706 Avg: 0.0397733779579Min: 0.0387006153024 Avg: 0.0396632463575Min: 0.0364565893877 Avg: 0.0374866103382Min: 0.0364116627909 Avg: 0.0372640048106Min: 0.0366508873195 Avg: 0.0377849114216Entirely Finished

User avatar
sunny lovett
 
Posts: 3388
Joined: Thu Dec 07, 2006 4:59 am

Post » Wed Sep 01, 2010 1:31 pm

Hi Waruddar! Glad to see you've come back :)

Awesome project you've got there, and nicely implemented... It's the true holy grail of mod patching!

Here's the result of my test:
ReadWriteAllALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingMin: 3.09900682329 Avg: 4.62513842654LoadMin: 0.0686968257767 Avg: 0.0707176642971Min: 0.0684632217076 Avg: 0.0702651997954Min: 0.0701000004692 Avg: 0.0717443096803Min: 0.0688202399553 Avg: 0.0703562163821Min: 0.0684890321551 Avg: 0.0700556974142Min: 0.0691457158542 Avg: 0.0705988555717Min: 0.070007141416 Avg: 0.0713413951568Min: 0.0688921045593 Avg: 0.0704155261328Min: 0.0689299381109 Avg: 0.0707852404855Min: 0.0942928768833 Avg: 0.0993214830872Min: 0.0690852024418 Avg: 0.0712387953248Min: 0.0721150396719 Avg: 0.0742896046696Min: 0.0720686852193 Avg: 0.0734268335937Min: 0.0686650169151 Avg: 0.0700400577695Min: 0.0706833706357 Avg: 0.0729965074065Min: 0.0685923415117 Avg: 0.0729258625676Min: 0.0724978983967 Avg: 0.0749084925794Min: 0.0735452222426 Avg: 0.0770850550715Min: 0.0706174706625 Avg: 0.072837837568Min: 0.0773084913407 Avg: 0.0795094325061Min: 0.0698083791989 Avg: 0.0711957150003Min: 0.0697805192307 Avg: 0.0713843474801Min: 0.0700091233701 Avg: 0.0736097194202Min: 0.0699019514553 Avg: 0.0731948224828Min: 0.0779838384407 Avg: 0.0802036326441Min: 0.0692431844521 Avg: 0.0706463100088Min: 0.068647798689 Avg: 0.0710441155201Min: 0.0692286013241 Avg: 0.0707549441778Min: 0.0685695565472 Avg: 0.0705119367501Min: 0.0721419574612 Avg: 0.0737643517405Min: 0.069574020636 Avg: 0.0755120709074Min: 0.1625564505 Avg: 0.166656644961Min: 0.0859336852428 Avg: 0.0897323559822Min: 0.0726041844381 Avg: 0.0742769818368Min: 0.0694970209691 Avg: 0.070709895375Min: 0.0701828183725 Avg: 0.0719279279665Min: 0.0698312880356 Avg: 0.0714970719068Min: 0.0691561924335 Avg: 0.0710780802823Min: 0.0694724417355 Avg: 0.0718611576601Min: 0.0807948724446 Avg: 0.0823558353439Min: 0.0690515880501 Avg: 0.0722256780545Min: 0.0691640752054 Avg: 0.0708515523524Min: 0.070970374854 Avg: 0.0727774275325Min: 0.0888113812211 Avg: 0.0911334331818Min: 0.0715126119659 Avg: 0.0727515365305Min: 0.0800257804179 Avg: 0.0829886009863Min: 0.069161470137 Avg: 0.0720829986815Min: 0.06985073596 Avg: 0.0719605648569Min: 0.0703956381996 Avg: 0.0722707100407Min: 0.0691374764808 Avg: 0.0712734686355Min: 0.0685696766656 Avg: 0.0713633474754Min: 0.0692630152541 Avg: 0.073833715629OverrideMin: 0.0700013006573 Avg: 0.07211282664Min: 0.0704696799501 Avg: 0.0723359941818Min: 0.0770325567865 Avg: 0.0795738100158Min: 0.0698716628426 Avg: 0.0716265451969Min: 0.0692560709074 Avg: 0.0712249005879Min: 0.0699301680251 Avg: 0.0726135510105Min: 0.088608929116 Avg: 0.0908050417083Min: 0.069102946186 Avg: 0.0710425429822Min: 0.0707041323555 Avg: 0.0725754462165Min: 0.172156292845 Avg: 0.174650931303Min: 0.0718195220601 Avg: 0.0729780330419Min: 0.102766751594 Avg: 0.104040999123Min: 0.0912210582621 Avg: 0.0927985441646Min: 0.0692375313786 Avg: 0.0702808064826Min: 0.0911704959108 Avg: 0.0930059395936Min: 0.0691834705781 Avg: 0.0706154321777Min: 0.0916133875743 Avg: 0.0930155263205Min: 0.0936890377857 Avg: 0.0946730917639Min: 0.0808705470549 Avg: 0.0823053169109Min: 0.0955404043674 Avg: 0.0968580729063Min: 0.0767496929003 Avg: 0.0780797089005Min: 0.0726202728002 Avg: 0.0739509706601Min: 0.099286624156 Avg: 0.100649260943Min: 0.075063034961 Avg: 0.0761771203671Min: 0.350482420011 Avg: 0.353721261018Min: 0.0702412409736 Avg: 0.0713656253337Min: 0.0708674708972 Avg: 0.0721886183659Min: 0.0709515350291 Avg: 0.0721091152433Min: 0.071461291367 Avg: 0.0725933030222Min: 0.0949173951193 Avg: 0.0961991660778Min: 0.0709154394411 Avg: 0.07212146308Min: 0.252160831069 Avg: 0.254186522712Min: 0.110670026229 Avg: 0.113175103053Min: 0.084168466097 Avg: 0.0854425314584Min: 0.0697393674075 Avg: 0.0707584398493Min: 0.0763599911788 Avg: 0.0777804739235Min: 0.0732476813859 Avg: 0.0745712055104Min: 0.0694895360896 Avg: 0.0706821370946Min: 0.0718034637275 Avg: 0.0731376178076Min: 0.111506380822 Avg: 0.113137723512Min: 0.0694126490337 Avg: 0.0708712812413Min: 0.0693300751209 Avg: 0.0704716023329Min: 0.0745323705091 Avg: 0.075845386786Min: 0.111267476528 Avg: 0.113840863088Min: 0.0808635952009 Avg: 0.0823219039146Min: 0.419872013814 Avg: 0.422790926179Min: 0.0705528356865 Avg: 0.0717408502696Min: 0.0741263026515 Avg: 0.0758423872787Min: 0.0741109162315 Avg: 0.0753032540646Min: 0.0694511732662 Avg: 0.0708101252704Min: 0.0692854999226 Avg: 0.0709764766074Min: 0.0702456891091 Avg: 0.0714952398756NewMin: 0.070002498088 Avg: 0.0713406836428Min: 0.0704833959733 Avg: 0.0719064003041Min: 0.0768960046546 Avg: 0.078042286642Min: 0.0698722146367 Avg: 0.0713586654467Min: 0.0694659891236 Avg: 0.0707253017647Min: 0.0702599982169 Avg: 0.0714001912886Min: 0.085881272317 Avg: 0.0873477543766Min: 0.0695218029025 Avg: 0.0712148455117Min: 0.071003846605 Avg: 0.072470994834Min: 0.156788344759 Avg: 0.158581489037Min: 0.0715795254382 Avg: 0.0728923420184Min: 0.0966204379629 Avg: 0.0981654015756Min: 0.0882716177982 Avg: 0.102274946355Min: 0.0694080582573 Avg: 0.0720321142251Min: 0.0871616859747 Avg: 0.0911007481314Min: 0.06965419218 Avg: 0.0711730310103Min: 0.0892383083947 Avg: 0.091263309244Min: 0.0911577896331 Avg: 0.0936319490623Min: 0.0803363991686 Avg: 0.0820364696443Min: 0.0931561699113 Avg: 0.0951299025633Min: 0.0761107792214 Avg: 0.0773581890646Min: 0.0728029691775 Avg: 0.0741286246158Min: 0.0925596430229 Avg: 0.0941489573627Min: 0.0747075557306 Avg: 0.0763383856646Min: 0.257904312533 Avg: 0.261924890697Min: 0.0701424848562 Avg: 0.0714239394153Min: 0.0710611656179 Avg: 0.0726872601831Min: 0.0708356470207 Avg: 0.0726598245708Min: 0.0712692107375 Avg: 0.0756257383764Min: 0.0905910408542 Avg: 0.0930854763869Min: 0.0710226376318 Avg: 0.0727957478452Min: 0.23358750393 Avg: 0.24339124652Min: 0.108359319266 Avg: 0.11411312551Min: 0.0836187290906 Avg: 0.0859529009633Min: 0.069748624034 Avg: 0.0755728210658Min: 0.0752551643886 Avg: 0.0781881720509Min: 0.073203714287 Avg: 0.0757409662589Min: 0.0695317839932 Avg: 0.0714270282607Min: 0.071624674953 Avg: 0.0731379795142Min: 0.104903902441 Avg: 0.112127387321Min: 0.0693051242708 Avg: 0.0727332411424Min: 0.0692885141443 Avg: 0.0728461696204Min: 0.074073473065 Avg: 0.0783741386148Min: 0.110841078626 Avg: 0.115177870619Min: 0.0791382666346 Avg: 0.083402804465Min: 0.285466657283 Avg: 0.296691881327Min: 0.070035530656 Avg: 0.0738471654021Min: 0.0737505571899 Avg: 0.0764633197168Min: 0.0734060800571 Avg: 0.0760427081451Min: 0.0693729836762 Avg: 0.0712321796897Min: 0.069259212755 Avg: 0.0732884397085Min: 0.0700149078232 Avg: 0.072890653829Entirely Finished


Best wishes, and hoping to see more of it!


EDIT: Forgot to copy the Oblivion master at first but the script ran fine, after I copied it I'm running the script again...
EDIT: Finished running, and updated the results

Cheers,
leandro
User avatar
Richus Dude
 
Posts: 3381
Joined: Fri Jun 16, 2006 1:17 am

Post » Wed Sep 01, 2010 10:19 am

This is awesome! Good luck!

:embarrass: Luck? I ain't need no steekin' luck! Just copious amounts of time...

this sounds absolutely brilliant.

I'm such a svcker for praise. Danke!

Profile.txt contents:

Thanks, that will help quite a bit. Just glancing at it, it looks comparable to my own results. I'll add it to my performance spreadsheet tomorrow.

Hi Waruddar! Glad to see you've come back :)

Awesome project you've got there, and nicely implemented... It's the true holy grail of mod patching!

Here's the result of my test:


Best wishes, and hoping to see more of it!


EDIT: Forgot to copy the Oblivion master at first but the script ran fine, after I copied it I'm running the script again...
EDIT: Finished running, and updated the results

Cheers,
leandro

Good to be back :D

Thanks for the results. It looks like it is a bit slower on your system than mine or Malonn's, relatively speaking, but still fairly fast in absolute terms (1.7 seconds for Malonn, 3.1 seconds for you on a full load/copy/save).

As a FYI, these benchmarks are very artificial, and don't reflect a typical workload. They're just standardized enough so that I can get some working numbers, and see where I might need to do some optimization. I'll probably write a more realistic test once I get all the record types supported and exposed. Probably making a mock Bashed Patch would do well.

I actually started this project at the end of last summer, but my last semester of college interrupted me. I never had enough time to seriously work on it, so I just played with some different approaches. As I worked with it, I kept finding better ways to implement it. Unfortunately, those better ways tended to involve substantial refactoring of the code.

This is the 3rd major revision of this project, so I have most of the code already written for the remaining parts, and it simply has to be adapted. Tediously adapted, but still faster than writing it from scratch again. Regex search and replace is pretty handy at times.

Now that I graduated, I have a bit of free time while I prep for the MCAT. Of course, I should be studying and not programming :whistle: I need to get this off my plate first.

So far, I've exposed three more record types: LTEX, ENCH, and MISC. I'll add SPEL and BSGN tonight, and see where tomorrow takes me. I'm hoping to make a new release in weekly intervals until I hit the beta versions.
User avatar
Baby K(:
 
Posts: 3395
Joined: Thu Nov 09, 2006 9:07 pm

Post » Wed Sep 01, 2010 10:28 am

ReadWriteAllALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingMin: 1.17818464112 Avg: 1.18017622219LoadMin: 0.025657286264 Avg: 0.0263287963861Min: 0.0257849757403 Avg: 0.0263273053371Min: 0.0263029613518 Avg: 0.0267278112766Min: 0.0257887234399 Avg: 0.0262815057721Min: 0.0257255479337 Avg: 0.0263580632424Min: 0.0258917851765 Avg: 0.0263563312699Min: 0.0261040655847 Avg: 0.0265371898946Min: 0.0257375941108 Avg: 0.0262359230383Min: 0.0259145390664 Avg: 0.0264299601807Min: 0.0347668730132 Avg: 0.0355840642463Min: 0.0259129329095 Avg: 0.0262994438682Min: 0.0268744855279 Avg: 0.0274322208466Min: 0.0267987284591 Avg: 0.0272676272377Min: 0.0256265015894 Avg: 0.0261787331437Min: 0.0264073615526 Avg: 0.026902416597Min: 0.0256254308181 Avg: 0.0261253043333Min: 0.0269416764263 Avg: 0.0274993046679Min: 0.0280975740338 Avg: 0.0286716787686Min: 0.0265444202777 Avg: 0.0270118868998Min: 0.0280464447047 Avg: 0.028624522001Min: 0.0261584072277 Avg: 0.0265839344153Min: 0.0262164965702 Avg: 0.0270206404551Min: 0.0262700351347 Avg: 0.0267115649992Min: 0.0260486531705 Avg: 0.0264782519659Min: 0.0286894428643 Avg: 0.0291780197423Min: 0.0258425296972 Avg: 0.0264229921365Min: 0.0260007361553 Avg: 0.0265404718086Min: 0.0259201606157 Avg: 0.0268769563326Min: 0.0259188221516 Avg: 0.0275455352183Min: 0.026669165133 Avg: 0.0270839926384Min: 0.0258540404885 Avg: 0.0272858838882Min: 0.0668131838715 Avg: 0.0686717510457Min: 0.0317563995315 Avg: 0.0323269841057Min: 0.026911962523 Avg: 0.027626592605Min: 0.025847348168 Avg: 0.0266290941944Min: 0.0261332441024 Avg: 0.0266992350678Min: 0.0261846411243 Avg: 0.0266408164631Min: 0.0257319725615 Avg: 0.0265411865484Min: 0.0259670068596 Avg: 0.0265381857119Min: 0.0296081646311 Avg: 0.0307372902794Min: 0.0257531202945 Avg: 0.0263458403882Min: 0.025797557303 Avg: 0.0263460036808Min: 0.0267344821817 Avg: 0.027262246612Min: 0.031954759913 Avg: 0.0333847080475Min: 0.0265690480174 Avg: 0.0278276459762Min: 0.0290010373097 Avg: 0.0301025129664Min: 0.0258283419776 Avg: 0.0265579682115Min: 0.0261297640957 Avg: 0.0266600501924Min: 0.0261814288104 Avg: 0.0266875797223Min: 0.025747766438 Avg: 0.0264540445039Min: 0.0258896436339 Avg: 0.026486229212Min: 0.0257638280074 Avg: 0.026445911996OverrideMin: 0.0263152752217 Avg: 0.0268278909152Min: 0.0263680107077 Avg: 0.0291469834365Min: 0.028797055379 Avg: 0.0294396225531Min: 0.026144487201 Avg: 0.0265368579555Min: 0.0258875020913 Avg: 0.0264529201941Min: 0.0261345825665 Avg: 0.0266237858457Min: 0.0336634431989 Avg: 0.0342218905806Min: 0.025978517651 Avg: 0.0264983369583Min: 0.0266726451397 Avg: 0.0271757416764Min: 0.067270938598 Avg: 0.068169436172Min: 0.026949707211 Avg: 0.0274568244939Min: 0.0392480508616 Avg: 0.0396796118454Min: 0.0348155931069 Avg: 0.0354337547265Min: 0.0259442529697 Avg: 0.0264587291283Min: 0.0356151915677 Avg: 0.0364026367743Min: 0.0259675422453 Avg: 0.0265932528024Min: 0.0347682114773 Avg: 0.0359345865819Min: 0.0367038982767 Avg: 0.0373755556299Min: 0.0308135854107 Avg: 0.0312068957671Min: 0.0352853940104 Avg: 0.0359561278233Min: 0.0290524343316 Avg: 0.0296121773465Min: 0.0272310523674 Avg: 0.0277834873682Min: 0.0394049188556 Avg: 0.0399659682115Min: 0.0283358206458 Avg: 0.0289541589426Min: 0.148080441693 Avg: 0.149014130166Min: 0.0263257152418 Avg: 0.0270062546428Min: 0.0266086665551 Avg: 0.0272059775807Min: 0.0265864480509 Avg: 0.0275544547432Min: 0.0267815961184 Avg: 0.0274268455747Min: 0.036709519826 Avg: 0.0375099829346Min: 0.0264477831689 Avg: 0.0269798199766Min: 0.103083955161 Avg: 0.104054293458Min: 0.0412894763259 Avg: 0.0419702405889Min: 0.0313104232893 Avg: 0.0319563874854Min: 0.0259608499247 Avg: 0.0263615619876Min: 0.0285513133679 Avg: 0.0290017226033Min: 0.027430751213 Avg: 0.0278049215325Min: 0.0259182867659 Avg: 0.0263535499414Min: 0.0267939099883 Avg: 0.0271681097541Min: 0.0418414589259 Avg: 0.0422708328593Min: 0.0260639116614 Avg: 0.0265483419776Min: 0.0259059728961 Avg: 0.0263730808098Min: 0.0282298142881 Avg: 0.0287916934917Min: 0.0397598795382 Avg: 0.0404533886565Min: 0.0306387819977 Avg: 0.0311690921867Min: 0.194828442362 Avg: 0.195622154258Min: 0.0263714907144 Avg: 0.026727385645Min: 0.0277351179521 Avg: 0.0281834793375Min: 0.0278518320227 Avg: 0.0284204115777Min: 0.0259522837544 Avg: 0.0266631099214Min: 0.0259801238079 Avg: 0.0264927127321Min: 0.0263345491049 Avg: 0.0268388877363NewMin: 0.0261800903463 Avg: 0.0268165273549Min: 0.0263407060398 Avg: 0.0267299314037Min: 0.0286273381295 Avg: 0.0290213766103Min: 0.0261056717417 Avg: 0.0265097112264Min: 0.0258832190062 Avg: 0.0263865939434Min: 0.0260917517149 Avg: 0.0265695245106Min: 0.0319223690815 Avg: 0.0323702512966Min: 0.0259581729965 Avg: 0.0264353970219Min: 0.0266440020077 Avg: 0.0270589017902Min: 0.0599270537058 Avg: 0.0605279973231Min: 0.0269502425966 Avg: 0.0274359257152Min: 0.0362862974737 Avg: 0.0372682001004Min: 0.0331757068764 Avg: 0.0337567876861Min: 0.025835301991 Avg: 0.0263521579388Min: 0.0335906307512 Avg: 0.0341063222352Min: 0.0259415760415 Avg: 0.026308997825Min: 0.0334530366405 Avg: 0.0339413993642Min: 0.0356727455246 Avg: 0.0362558848921Min: 0.0300182700352 Avg: 0.0304464527355Min: 0.0341463610507 Avg: 0.0345526197089Min: 0.028641793542 Avg: 0.0291431259829Min: 0.0271724276393 Avg: 0.0275540826502Min: 0.0359155429145 Avg: 0.0364459735653Min: 0.0280603647315 Avg: 0.0284813197256Min: 0.101171289945 Avg: 0.102000497909Min: 0.0262994813452 Avg: 0.0267086873013Min: 0.0265634264681 Avg: 0.027121416095Min: 0.0265404048854 Avg: 0.0271430644136Min: 0.02684718086 Avg: 0.0273140264347Min: 0.0345176509955 Avg: 0.0350528733478Min: 0.0264654508951 Avg: 0.0267944828509Min: 0.0953934080642 Avg: 0.0962159129998Min: 0.0401860465116 Avg: 0.0406422218504Min: 0.0307019575038 Avg: 0.0312088151246Min: 0.0260657855111 Avg: 0.0264483105237Min: 0.028376242262 Avg: 0.0287145069433Min: 0.027504634432 Avg: 0.0287632966371Min: 0.0259579053037 Avg: 0.0264701863811Min: 0.0270104734817 Avg: 0.0276987732976Min: 0.0395620545424 Avg: 0.0404780297808Min: 0.0261201271541 Avg: 0.0267095091183Min: 0.0259894930567 Avg: 0.0265055004183Min: 0.0282560481847 Avg: 0.0288271253137Min: 0.0396795716915 Avg: 0.0403322255312Min: 0.0301012548101 Avg: 0.030645257487Min: 0.127867492053 Avg: 0.128978684959Min: 0.0262930567175 Avg: 0.0267463382968Min: 0.0277407395014 Avg: 0.0282565996319Min: 0.0277024594278 Avg: 0.028216839217Min: 0.0259306006358 Avg: 0.0263631842061Min: 0.0259150744521 Avg: 0.0263275382299Min: 0.0263184875356 Avg: 0.0268451999331Entirely Finished

User avatar
Tyler F
 
Posts: 3420
Joined: Mon Aug 27, 2007 8:07 pm

Post » Thu Sep 02, 2010 1:56 am

ReadWriteAllALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingMin: 4.76975517511 Avg: 4.90514194768LoadMin: 0.0727617736207 Avg: 0.0741984860655Min: 0.0732305634154 Avg: 0.0740700469909Min: 0.074125228914 Avg: 0.0748733707805Min: 0.0729427591335 Avg: 0.0739377176607Min: 0.0730486449876 Avg: 0.0737657907528Min: 0.0729679478389 Avg: 0.074795262471Min: 0.0739120578333 Avg: 0.0760439039135Min: 0.072843870142 Avg: 0.0752964663978Min: 0.0733821621052 Avg: 0.0755969863113Min: 0.0955958015093 Avg: 0.0980732879377Min: 0.0733583727723 Avg: 0.0753439937532Min: 0.0755791769637 Avg: 0.0775430423665Min: 0.0756444810147 Avg: 0.0776784176642Min: 0.0729730788714 Avg: 0.0741609502299Min: 0.0744783372469 Avg: 0.0752683576684Min: 0.0729194362581 Avg: 0.0738009196676Min: 0.0756337524921 Avg: 0.076729102004Min: 0.0792576608649 Avg: 0.0799569739595Min: 0.0744993278348 Avg: 0.075409409754Min: 0.0779898293605 Avg: 0.0789575234465Min: 0.0736895576024 Avg: 0.0743255024447Min: 0.073694688635 Avg: 0.0745634284254Min: 0.0740398671902 Avg: 0.0747602734934Min: 0.0735020416845 Avg: 0.0744526307737Min: 0.0800767602474 Avg: 0.0809656603312Min: 0.0729161710556 Avg: 0.0736079088803Min: 0.0730150600471 Avg: 0.0738656966216Min: 0.0730705684904 Avg: 0.073841827991Min: 0.07304258104 Avg: 0.0738475980704Min: 0.0751789564226 Avg: 0.0759127407271Min: 0.0730738336929 Avg: 0.0738947802472Min: 0.170313897915 Avg: 0.171462782755Min: 0.0866197596998 Avg: 0.0874656757243Min: 0.0754816873447 Avg: 0.0763013278179Min: 0.072913838768 Avg: 0.0736979631666Min: 0.0735472880627 Avg: 0.0744295831083Min: 0.0735864704933 Avg: 0.0744298536536Min: 0.072915704598 Avg: 0.0735902161471Min: 0.0733574398573 Avg: 0.0739460812438Min: 0.0815419032772 Avg: 0.0823086847857Min: 0.0727850964961 Avg: 0.073694259494Min: 0.0726614852567 Avg: 0.0736280505155Min: 0.0751845539127 Avg: 0.0760892575769Min: 0.0882570255498 Avg: 0.0893978453395Min: 0.0744298256662 Avg: 0.0753235629144Min: 0.081297013086 Avg: 0.0823442801581Min: 0.0727249234777 Avg: 0.0738415761039Min: 0.0733760981576 Avg: 0.0740885746831Min: 0.0736405795641 Avg: 0.0744385717444Min: 0.0728121510315 Avg: 0.073555045251Min: 0.0728970462978 Avg: 0.0735964480194Min: 0.0729096406504 Avg: 0.0735656804822OverrideMin: 0.073762791431 Avg: 0.0744832490445Min: 0.0743104125443 Avg: 0.0748657815169Min: 0.0804256704627 Avg: 0.0815279048875Min: 0.0737026184125 Avg: 0.0743355685977Min: 0.072913838768 Avg: 0.0735711007184Min: 0.0735491538927 Avg: 0.0742887875743Min: 0.0963897121864 Avg: 0.0972156265131Min: 0.0728634613573 Avg: 0.0739517253797Min: 0.0748533690827 Avg: 0.0755737940441Min: 0.179940647947 Avg: 0.180994282164Min: 0.0757844182668 Avg: 0.0765526317999Min: 0.10739904227 Avg: 0.10877581026Min: 0.0961672119555 Avg: 0.0974535478292Min: 0.0727995566788 Avg: 0.0737546284246Min: 0.0988152912234 Avg: 0.0998029123741Min: 0.0729380945585 Avg: 0.0737531404252Min: 0.0956979557034 Avg: 0.0964932517592Min: 0.101627563534 Avg: 0.102740391209Min: 0.0848061729121 Avg: 0.0861776839265Min: 0.0963519291283 Avg: 0.0981036729797Min: 0.0814098958027 Avg: 0.0827677536059Min: 0.0765204882131 Avg: 0.077547394415Min: 0.108734510112 Avg: 0.110290784945Min: 0.0791121261227 Avg: 0.0798335912843Min: 0.601190959307 Avg: 0.636175701482Min: 0.0742423097482 Avg: 0.0748656182568Min: 0.074977913237 Avg: 0.0757138152586Min: 0.0747554130061 Avg: 0.07591720939Min: 0.075265717519 Avg: 0.0759817018049Min: 0.101598643168 Avg: 0.102692607302Min: 0.0745165867626 Avg: 0.075611875635Min: 0.267364580389 Avg: 0.269335769174Min: 0.111779544719 Avg: 0.112774507911Min: 0.0864863528527 Avg: 0.0873113995684Min: 0.0734880479592 Avg: 0.0741249863561Min: 0.0799899991511 Avg: 0.0808927483583Min: 0.0772542258718 Avg: 0.0777744426066Min: 0.0734124818432 Avg: 0.073995894241Min: 0.0755507230558 Avg: 0.0763307939387Min: 0.113929913827 Avg: 0.116366813787Min: 0.0734567953062 Avg: 0.074506679205Min: 0.0730257885698 Avg: 0.0749261970932Min: 0.078650799648 Avg: 0.0842362364716Min: 0.108220473939 Avg: 0.116352806068Min: 0.0846806958426 Avg: 0.0898003095412Min: 0.579655082661 Avg: 0.673965140698Min: 0.0743421316548 Avg: 0.0753155631681Min: 0.0777043573662 Avg: 0.0785323707516Min: 0.0772812804072 Avg: 0.0783083545338Min: 0.073398488118 Avg: 0.07404283386Min: 0.0730141271322 Avg: 0.0738907967001Min: 0.074155548652 Avg: 0.0748315108839NewMin: 0.0737245419152 Avg: 0.0745562962901Min: 0.0742488401534 Avg: 0.0749015074974Min: 0.0797329810648 Avg: 0.0807173976522Min: 0.0736601707792 Avg: 0.0743987595962Min: 0.0729992004917 Avg: 0.0737650957311Min: 0.0737511299933 Avg: 0.0744207250802Min: 0.089284631438 Avg: 0.0901853888716Min: 0.0734372040911 Avg: 0.0740199028089Min: 0.0749312674864 Avg: 0.0756238542637Min: 0.159558787173 Avg: 0.161039211351Min: 0.0758180032074 Avg: 0.0764238148947Min: 0.0998177084064 Avg: 0.100806262472Min: 0.0921337538914 Avg: 0.093051341112Min: 0.0730220569098 Avg: 0.0738363517799Min: 0.0932122036479 Avg: 0.0941220663321Min: 0.0732902699763 Avg: 0.073891972173Min: 0.0921533451069 Avg: 0.0930825984295Min: 0.0986324398805 Avg: 0.0999530417228Min: 0.0837044002803 Avg: 0.0844410672921Min: 0.0939389444438 Avg: 0.0947089351801Min: 0.0799578135832 Avg: 0.0810305632288Min: 0.0763502312229 Avg: 0.0770443433165Min: 0.0993279280237 Avg: 0.100364723125Min: 0.0785892272572 Avg: 0.0793133465621Min: 0.313634832808 Avg: 0.321436899028Min: 0.074587954761 Avg: 0.0756386083147Min: 0.0752867081067 Avg: 0.076249481066Min: 0.0751285790118 Avg: 0.07616963287Min: 0.0753841977257 Avg: 0.0767240549338Min: 0.0957371381339 Avg: 0.0973861540485Min: 0.0750875307513 Avg: 0.0760561764105Min: 0.244116804691 Avg: 0.245875344829Min: 0.109007387754 Avg: 0.110405435536Min: 0.0855711632237 Avg: 0.0873506146511Min: 0.0743300037595 Avg: 0.075299866873Min: 0.0794209209923 Avg: 0.0819691690246Min: 0.0777188175489 Avg: 0.0786840580684Min: 0.0736209883489 Avg: 0.0746833313276Min: 0.075692526138 Avg: 0.0767579244134Min: 0.108079603772 Avg: 0.10943725167Min: 0.0740421994776 Avg: 0.0750003265203Min: 0.0735491538928 Avg: 0.0746442095364Min: 0.0796574149485 Avg: 0.080877845041Min: 0.108433178563 Avg: 0.109603231244Min: 0.0836568216146 Avg: 0.0850213171081Min: 0.338149507094 Avg: 0.343006006107Min: 0.0745375773504 Avg: 0.0756003961157Min: 0.0778466269057 Avg: 0.0789512029473Min: 0.0775210395659 Avg: 0.0786526141678Min: 0.0736027965061 Avg: 0.0746968446016Min: 0.0734166799607 Avg: 0.0745568467099Min: 0.0744895322271 Avg: 0.0754882037561Entirely Finished


I'm running this on my laptop, so I;m not surprised that it looks to be slower than what some others are reporting :shrug:
User avatar
Dona BlackHeart
 
Posts: 3405
Joined: Fri Dec 22, 2006 4:05 pm

Post » Wed Sep 01, 2010 10:23 am

ReadWriteAllALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingMin: 3.77745998444 Avg: 5.91706599582LoadMin: 0.0639232081172 Avg: 0.0648457220122Min: 0.0638413541386 Avg: 0.0647193009167Min: 0.0649780907909 Avg: 0.0657552621911Min: 0.0638416335037 Avg: 0.064729517299Min: 0.0637857604807 Avg: 0.064595813155Min: 0.0640651255956 Avg: 0.0648965971932Min: 0.0649289225307 Avg: 0.0657240571078Min: 0.0638187255643 Avg: 0.0646333263026Min: 0.0640885922652 Avg: 0.0650346538457Min: 0.0839036804957 Avg: 0.0848575251883Min: 0.0639192970056 Avg: 0.0648526390924Min: 0.0665430941642 Avg: 0.0674027537019Min: 0.0662276909495 Avg: 0.0670741504856Min: 0.0635119826682 Avg: 0.0643509356636Min: 0.0651996273269 Avg: 0.0660866450904Min: 0.0636561350674 Avg: 0.0644824803152Min: 0.066839500551 Avg: 0.0677687778754Min: 0.0680809991214 Avg: 0.0690652275638Min: 0.0657385226335 Avg: 0.0664798375213Min: 0.0701251136667 Avg: 0.0712536118417Min: 0.0647121352015 Avg: 0.0655361617189Min: 0.0646191066183 Avg: 0.0654520560574Min: 0.0649347891981 Avg: 0.0656949360882Min: 0.0643056589595 Avg: 0.0652160539957Min: 0.0714124281158 Avg: 0.0723294496926Min: 0.0637173160276 Avg: 0.0645839205821Min: 0.0639290747847 Avg: 0.0647697989549Min: 0.0638310176294 Avg: 0.0646919119609Min: 0.0638849350965 Avg: 0.0647193539961Min: 0.0661880211032 Avg: 0.0670475269902Min: 0.0637371509508 Avg: 0.0646672049101Min: 0.14589871059 Avg: 0.147366534015Min: 0.0765013430478 Avg: 0.0777186234563Min: 0.0666537227497 Avg: 0.0675857434395Min: 0.0638128588969 Avg: 0.0646581981788Min: 0.0647906367988 Avg: 0.0655734597554Min: 0.0646252526508 Avg: 0.0654195882438Min: 0.0637446938089 Avg: 0.0645468739742Min: 0.0643291256291 Avg: 0.0652453873327Min: 0.0724645171383 Avg: 0.0733629860778Min: 0.0637332398392 Avg: 0.064601154616Min: 0.0638123001667 Avg: 0.064610108268Min: 0.0652982432125 Avg: 0.0661531535433Min: 0.0795922386784 Avg: 0.0807323975533Min: 0.0656334813503 Avg: 0.0675980662347Min: 0.0733841870964 Avg: 0.0748725606187Min: 0.0637332398391 Avg: 0.0648599389029Min: 0.0642671065736 Avg: 0.0652850767346Min: 0.064839805059 Avg: 0.0657050435181Min: 0.0636877033254 Avg: 0.0646011713779Min: 0.0636413287164 Avg: 0.0644677130753Min: 0.0636416080815 Avg: 0.064505209461OverrideMin: 0.0651057606484 Avg: 0.0663838476678Min: 0.0656851638965 Avg: 0.0667758192731Min: 0.0716208344915 Avg: 0.0726962421202Min: 0.0648914876053 Avg: 0.0659096030361Min: 0.0640352335283 Avg: 0.0652513489843Min: 0.0649356272934 Avg: 0.0657509990795Min: 0.0823154898179 Avg: 0.0840335908614Min: 0.0644162875449 Avg: 0.0653811783341Min: 0.0659251385301 Avg: 0.0669858292045Min: 0.169574065978 Avg: 0.173206781868Min: 0.0666989798983 Avg: 0.0678159291195Min: 0.0973863996681 Avg: 0.0996678795769Min: 0.0846819917057 Avg: 0.0862086186932Min: 0.0646149161416 Avg: 0.0654409708496Min: 0.0851773060543 Avg: 0.0867544534291Min: 0.0642321859342 Avg: 0.0654218064028Min: 0.0857162013608 Avg: 0.086776076289Min: 0.0870501697841 Avg: 0.0887205440915Min: 0.0744488475491 Avg: 0.0763516396637Min: 0.0866660427512 Avg: 0.0886157486496Min: 0.0709967328251 Avg: 0.0724189890056Min: 0.0677195006627 Avg: 0.0689262629748Min: 0.0936948690405 Avg: 0.0955059735246Min: 0.0691154881416 Avg: 0.0706458362725Min: 0.513327531851 Avg: 0.524191499199Min: 0.0651568844644 Avg: 0.0661961422471Min: 0.065817582961 Avg: 0.0668516752828Min: 0.0662441734913 Avg: 0.0671389073192Min: 0.0659075385279 Avg: 0.0674485025331Min: 0.0880947159486 Avg: 0.0896606803379Min: 0.0653943448119 Avg: 0.0669379320556Min: 0.246311193182 Avg: 0.250659757036Min: 0.0989726347901 Avg: 0.101

(how did you guys get your codebox's to scroll?) nvm, :)
User avatar
Enie van Bied
 
Posts: 3350
Joined: Sun Apr 22, 2007 11:47 pm

Post » Thu Sep 02, 2010 1:48 am

ReadWriteAllALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingMin: 2.57739265745 Avg: 3.85677120975LoadMin: 0.0485424823546 Avg: 0.0490620986746Min: 0.0485422029895 Avg: 0.0491265426192Min: 0.0492015046605 Avg: 0.049951870978Min: 0.0484662156782 Avg: 0.0489816471088Min: 0.0483315616929 Avg: 0.0489404072305Min: 0.0485754474382 Avg: 0.049360262268Min: 0.0491311046516 Avg: 0.0496848677695Min: 0.0485494664825 Avg: 0.0492689433992Min: 0.0485860633125 Avg: 0.0493227351521Min: 0.0642673859387 Avg: 0.0650640877542Min: 0.0484813013944 Avg: 0.0489856643791Min: 0.0502787365433 Avg: 0.0509525875495Min: 0.0502144825669 Avg: 0.0507683853674Min: 0.0483628505858 Avg: 0.0490404897829Min: 0.0494624316778 Avg: 0.0500432764499Min: 0.048258926763 Avg: 0.0486929875166Min: 0.0508980890029 Avg: 0.0513624664587Min: 0.051370216047 Avg: 0.0520200947327Min: 0.0498784063338 Avg: 0.0503592160456Min: 0.0534774671083 Avg: 0.05398092495Min: 0.0490450601962 Avg: 0.0495205312407Min: 0.0490249459079 Avg: 0.0496351631283Min: 0.0491280316353 Avg: 0.049625002619Min: 0.048769606193 Avg: 0.049405748496Min: 0.0544144577034 Avg: 0.0549641337097Min: 0.0487321712676 Avg: 0.0493786947782Min: 0.0486897077701 Avg: 0.0492833893693Min: 0.0486586982424 Avg: 0.0492911026401Min: 0.0486324379216 Avg: 0.0491580941153Min: 0.0502619746364 Avg: 0.0509408625957Min: 0.0486542284006 Avg: 0.0494291118005Min: 0.113107950871 Avg: 0.115990322792Min: 0.0589127947826 Avg: 0.0598580042994Min: 0.050742482634 Avg: 0.0514078521153Min: 0.0487665331767 Avg: 0.049395657828Min: 0.0495191427961 Avg: 0.0503644736971Min: 0.0493160443576 Avg: 0.0503822077946Min: 0.0491542919561 Avg: 0.0498757467779Min: 0.0492674348276 Avg: 0.0500702826756Min: 0.056031143623 Avg: 0.0569287130068Min: 0.0490783046449 Avg: 0.0499411433576Min: 0.0491241205237 Avg: 0.0497914315926Min: 0.0501759301811 Avg: 0.050799492673Min: 0.0613496966793 Avg: 0.0622932383864Min: 0.0501158666814 Avg: 0.0508677946499Min: 0.0556168451577 Avg: 0.0563527096321Min: 0.0488430792182 Avg: 0.0497659870179Min: 0.04884754906 Avg: 0.0498335598519Min: 0.0493791808735 Avg: 0.0502654750813Min: 0.0486047807752 Avg: 0.0492719381933Min: 0.048343853758 Avg: 0.0490695297866Min: 0.0483296061371 Avg: 0.049168707196OverrideMin: 0.0490319300358 Avg: 0.0497007692318Min: 0.0491118284586 Avg: 0.0498327971851Min: 0.0537506861905 Avg: 0.0544524932638Min: 0.048548349022 Avg: 0.0492741367967Min: 0.0484254283715 Avg: 0.0491020450923Min: 0.0487933522277 Avg: 0.0493748898254Min: 0.0637198303136 Avg: 0.0644421874847Min: 0.0485810347405 Avg: 0.0491823094835Min: 0.0495711047074 Avg: 0.0501725638314Min: 0.141514354478 Avg: 0.142831558201Min: 0.0502354349505 Avg: 0.0506491858602Min: 0.0764594382806 Avg: 0.0776245723968Min: 0.0651255955715 Avg: 0.0657954991486Min: 0.0488333014391 Avg: 0.0494862447602Min: 0.0652440463802 Avg: 0.0659618024079Min: 0.0486704315772 Avg: 0.0491738475141Min: 0.0667352973632 Avg: 0.0672822188295Min: 0.0676647451003 Avg: 0.0688431742023Min: 0.0569695310437 Avg: 0.0576162082052Min: 0.067114395824 Avg: 0.0675919872498Min: 0.0538029274671 Avg: 0.0545999449651Min: 0.0508729461426 Avg: 0.0514891473637Min: 0.0728374695667 Avg: 0.0735743229936Min: 0.0525678542944 Avg: 0.0529959226661Min: 0.453814102072 Avg: 0.460305505309Min: 0.0490903173448 Avg: 0.0503234573109Min: 0.0494761205683 Avg: 0.0500432345452Min: 0.0494786348545 Avg: 0.0500548086419Min: 0.0498473968059 Avg: 0.0504284483084Min: 0.0682483388252 Avg: 0.0691943948183Min: 0.0494599173917 Avg: 0.0501133775382Min: 0.202441092374 Avg: 0.204593279313Min: 0.0771047716958 Avg: 0.0781364279538Min: 0.05944191231 Avg: 0.0603681752848Min: 0.0484882855224 Avg: 0.0490411630529Min: 0.0529665083131 Avg: 0.0538605157918Min: 0.0513196509612 Avg: 0.0524198382755Min: 0.0487466982536 Avg: 0.0498246983904Min: 0.0501893397065 Avg: 0.050757777874Min: 0.078416670275 Avg: 0.0795084095884Min: 0.0489598538361 Avg: 0.0499602239949Min: 0.0486598157029 Avg: 0.0493833238582Min: 0.05215579075 Avg: 0.0527507127303Min: 0.0756400603988 Avg: 0.0768483564252Min: 0.0561671944339 Avg: 0.0569176836721Min: 0.53968255742 Avg: 0.542741949047Min: 0.0491604379887 Avg: 0.0497022526606Min: 0.0518666478561 Avg: 0.0523328411851Min: 0.0516590795758 Avg: 0.0521852330394Min: 0.0486701522121 Avg: 0.0491232824284Min: 0.0484723617109 Avg: 0.0490164867323Min: 0.0491084760772 Avg: 0.0498228825172NewMin: 0.0488989522411 Avg: 0.049346696298Min: 0.0492193840279 Avg: 0.0498342275345Min: 0.0534336067852 Avg: 0.0539715885678Min: 0.0488075998486 Avg: 0.0494463206916Min: 0.048618749031 Avg: 0.0493320799152Min: 0.0489514728828 Avg: 0.0494692453929Min: 0.0608703061423 Avg: 0.0614140400526Min: 0.0486964125329 Avg: 0.0492377075857Min: 0.0497820253692 Avg: 0.0504783485052Min: 0.117253170445 Avg: 0.119099888394Min: 0.0499270158638 Avg: 0.0505300003213Min: 0.0689400468495 Avg: 0.0698234384538Min: 0.0615664840085 Avg: 0.0621491725904Min: 0.0487408315861 Avg: 0.0493474757267Min: 0.0613069538168 Avg: 0.0618635692525Min: 0.0486589776075 Avg: 0.0491403376686Min: 0.0633225731203 Avg: 0.0639082117979Min: 0.0652918178148 Avg: 0.0661109107442Min: 0.0557816705755 Avg: 0.0564112785284Min: 0.0646733034506 Avg: 0.0652244293618Min: 0.0530522734035 Avg: 0.0535053253975Min: 0.0508156762941 Avg: 0.0512922592117Min: 0.0654449098978 Avg: 0.0662543312069Min: 0.0520432066087 Avg: 0.052981060442Min: 0.254318635469 Avg: 0.259485090982Min: 0.0491433967167 Avg: 0.0498002762921Min: 0.0496448570977 Avg: 0.0501475522727Min: 0.0495325523216 Avg: 0.05037979408Min: 0.0497644253669 Avg: 0.0503409511544Min: 0.0631870810397 Avg: 0.0636812052929Min: 0.0494794729498 Avg: 0.0499030491305Min: 0.171716517043 Avg: 0.172911428687Min: 0.07370936809 Avg: 0.074755551334Min: 0.0580193851453 Avg: 0.0586114045221Min: 0.0487531236512 Avg: 0.0496048129022Min: 0.0526019368384 Avg: 0.0531818736739Min: 0.0511620890366 Avg: 0.0515871961381Min: 0.04866512364 Avg: 0.049253930318Min: 0.0500449079422 Avg: 0.0507893181955Min: 0.0729908410148 Avg: 0.0736371075095Min: 0.0490894792495 Avg: 0.0500942354405Min: 0.0486003109334 Avg: 0.049371841952Min: 0.0521323240803 Avg: 0.0527925923546Min: 0.0747240221872 Avg: 0.0766485796379Min: 0.0550684514373 Avg: 0.0558418933133Min: 0.253240006761 Avg: 0.256810720357Min: 0.0491252379843 Avg: 0.0499438224691Min: 0.051861339919 Avg: 0.0530004120635Min: 0.0515392319414 Avg: 0.0524685567579Min: 0.0486570220517 Avg: 0.0490978797585Min: 0.048562596643 Avg: 0.0492266028224Min: 0.0491325014771 Avg: 0.0498346326139Entirely Finished


godspeed
User avatar
Manuela Ribeiro Pereira
 
Posts: 3423
Joined: Fri Nov 17, 2006 10:24 pm

Post » Thu Sep 02, 2010 1:49 am

it tells me:
C:\awl>test.py > profile.txt
Traceback (most recent call last):
File "C:\awl\Test.py", line 3679, in
class BaseRecord(object):
File "C:\awl\Test.py", line 3703, in BaseRecord
@recType.setter
AttributeError: 'property' object has no attribute 'setter'

??????

Bash simply works.. I'm running windows 7 X64 ultimate with wrye python stuff installed.
User avatar
Lalla Vu
 
Posts: 3411
Joined: Wed Jul 19, 2006 9:40 am

Post » Wed Sep 01, 2010 10:25 pm

Profile.txt

Profile.txt

I'm running this on my laptop, so I;m not surprised that it looks to be slower than what some others are reporting :shrug:

Profile.txt
(how did you guys get your codebox's to scroll?) nvm, :)

Profile.txt

godspeed

Thanks for the data. It looks about what I expected, though a few cases are slower than I'd like. I can probably do something about that though, since I haven't done that many optimizations yet.

it tells me:
C:\awl>test.py > profile.txt
Traceback (most recent call last):
File "C:\awl\Test.py", line 3679, in
class BaseRecord(object):
File "C:\awl\Test.py", line 3703, in BaseRecord
@recType.setter
AttributeError: 'property' object has no attribute 'setter'

??????

Bash simply works.. I'm running windows 7 X64 ultimate with wrye python stuff installed.

Ah, now this I needed to know. Thanks for the bug report, chris_1979!

Looking back at the python documentation, the getter, setter, and deleter attributes for decorators weren't added until python 2.6. Wrye Bash is still recommending python 2.5 (though it supports 2.6, mostly). I can make the test script compatible with 2.5 with some minor changes...it won't look as nice, syntactically, but it should end up doing the same thing. I'll make this change now, so it'll be out with the next alpha.

Thanks for the support, everyone. I should be good on the data for this round :foodndrink:
User avatar
James Wilson
 
Posts: 3457
Joined: Mon Nov 12, 2007 12:51 pm

Post » Wed Sep 01, 2010 7:14 pm

As you can see i installed py 2.6, tho wrye bash won't start anymore. I installed 32 bit version of py26.4 + PIL1.1.7 + PyWIN32-214-py26 + comtypes-0.6.2 + wxpython 2.8-w32-ansi-2.8.10.1-py26 + Psyco 1.6.win32-py25

Wrye tells me:
Microsoft Windows [Version 6.1.7600]
Copyright © 2009 Microsoft Corporation. All rights reserved.

D:\games\tes4 Oblivion\Mopy>bash.py
Traceback (most recent call last):
File "D:\games\tes4 Oblivion\Mopy\bash.py", line 56, in
import bosh, basher
File "D:\games\tes4 Oblivion\Mopy\bosh.py", line 13960, in
class ListPatcher(Patcher):
File "D:\games\tes4 Oblivion\Mopy\bosh.py", line 13965, in ListPatcher
defaultItemCheck = inisettings['AutoItemCheck'] #--GUI: Whether new items ar
e checked by default or not.
KeyError: 'AutoItemCheck'

D:\games\tes4 Oblivion\Mopy>

Your telling me wrye works in 2.6. so what do i need to make it work?


[edit]
Even when going back to 2.5.2 shows same error message... pfffffttttt.... I just love this..

[edit2]
Sorry for taking your time, the newest bash is the problem. I figured it all out.. 2.78 is corrupt. 2.77 works fine.
User avatar
Erin S
 
Posts: 3416
Joined: Sat Jul 29, 2006 2:06 pm

Post » Wed Sep 01, 2010 11:36 am

Profile.txt

As you can see i installed py 2.6, tho wrye bash won't start anymore. I installed 32 bit version of py26.4 + PIL1.1.7 + PyWIN32-214-py26 + comtypes-0.6.2 + wxpython 2.8-w32-ansi-2.8.10.1-py26 + Psyco 1.6.win32-py25

Wrye tells me:
Microsoft Windows [Version 6.1.7600]
Copyright ? 2009 Microsoft Corporation. All rights reserved.

D:\games\tes4 Oblivion\Mopy>bash.py
Traceback (most recent call last):
File "D:\games\tes4 Oblivion\Mopy\bash.py", line 56, in
import bosh, basher
File "D:\games\tes4 Oblivion\Mopy\bosh.py", line 13960, in
class ListPatcher(Patcher):
File "D:\games\tes4 Oblivion\Mopy\bosh.py", line 13965, in ListPatcher
defaultItemCheck = inisettings['AutoItemCheck'] #--GUI: Whether new items ar
e checked by default or not.
KeyError: 'AutoItemCheck'

D:\games\tes4 Oblivion\Mopy>

Your telling me wrye works in 2.6. so what do i need to make it work?

Wrye Bash's http://www.gamesas.com/bgsforums/index.php?showtopic=1075540&st=0&start=0 lists the requirements as Python 2.6.4, wxpython 2.8.10.1 ansi and ComTypes, and links to the 0.6.1 version of ComTypes.

Since you installed 0.6.2, that might be the reason. I know that when I forgot to install ComTypes at all, Bash would shutdown as soon as it opened.

Also, you installed the version of psyco for python 2.5. The 2.6 version is http://www.voidspace.org.uk/downloads/psyco-1.6.win32-py2.6.zip. It is linked a couple clicks away from psyco's http://psyco.sourceforge.net/, so I saved you a little time hunting it down. That could also be an issue. At best, the version you installed won't do anything at all, and at worst, it could be causing this issue.

If trying these two fixes doesn't help, you're probably better off asking in the Wrye Bash thread.

Edit:
Actually, it looks to be an issue with v278 of Wrye Bash (I'm still using v277). There are a lot of posts at the end of the thread in regards to your error message.
User avatar
Manuel rivera
 
Posts: 3395
Joined: Mon Sep 10, 2007 4:12 pm

Post » Wed Sep 01, 2010 7:49 pm

Status Update:

The interface now supports python v2.5.

The following record types have been fully exposed since the last release:
LTEX
ENCH
MISC
SPEL
BSGN
ACTI
APPA
ARMO
BOOK
CLOT
CONT
DOOR
INGR
LIGH
STAT

This leaves 26 more record types to expose before the v0.2a release.
User avatar
Misty lt
 
Posts: 3400
Joined: Mon Dec 25, 2006 10:06 am

Post » Wed Sep 01, 2010 10:32 pm

Here's my result from a test at my home desktop, much better than my laptop.

ReadWriteAllALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingALL:Save Test - TestALL.espALL:Finished testingMin: 1.70085085816 Avg: 1.7621806024LoadMin: 0.0371247671054 Avg: 0.0382890809666Min: 0.0371956751461 Avg: 0.0378830691913Min: 0.0378392135263 Avg: 0.0384780029843Min: 0.0373267591997 Avg: 0.0381837997741Min: 0.0371703782235 Avg: 0.0378937053974Min: 0.0372750154944 Avg: 0.0381845701804Min: 0.0376993138785 Avg: 0.0383227067094Min: 0.0371910757056 Avg: 0.0378419808564Min: 0.0373390243744 Avg: 0.0379643528031Min: 0.0507544423888 Avg: 0.051362833378Min: 0.0373532059825 Avg: 0.0380638923608Min: 0.0389821744851 Avg: 0.0394634369396Min: 0.0387280553987 Avg: 0.0392725869898Min: 0.0372658166134 Avg: 0.0377341048128Min: 0.0381358774372 Avg: 0.0387196384227Min: 0.0372320873832 Avg: 0.0377667876703Min: 0.0391354891677 Avg: 0.0396803005581Min: 0.0405862293519 Avg: 0.0413265821213Min: 0.0384478728163 Avg: 0.0389166247926Min: 0.0406257078826 Avg: 0.0412036659074Min: 0.0377529740174 Avg: 0.038433350083Min: 0.0377786542267 Avg: 0.0382927720176Min: 0.0377353428289 Avg: 0.0384356613018Min: 0.0375590309439 Avg: 0.0381921707558Min: 0.0415340973771 Avg: 0.0421264439848Min: 0.0373029954239 Avg: 0.0378353499963Min: 0.0373463068218 Avg: 0.0379271701598Min: 0.0373896182196 Avg: 0.0378643303042Min: 0.0374122321353 Avg: 0.0379537970873Min: 0.0386123028134 Avg: 0.0391650597371Min: 0.037518402553 Avg: 0.0379501175349Min: 0.0964744138876 Avg: 0.0976769835949Min: 0.0461902642877 Avg: 0.0469489994875Min: 0.0389296642063 Avg: 0.0397881919331Min: 0.0372991625569 Avg: 0.0382445890457Min: 0.0384053279919 Avg: 0.0418514779344Min: 0.0380116925443 Avg: 0.0413953744194Min: 0.0372995458436 Avg: 0.0409532800335Min: 0.0375808782861 Avg: 0.0381801585504Min: 0.0427586984043 Avg: 0.0433673346971Min: 0.0373999669607 Avg: 0.039802898644Min: 0.0372734823475 Avg: 0.0388743061073Min: 0.0386295507152 Avg: 0.0399763780403Min: 0.0464221527451 Avg: 0.0477576577809Min: 0.0382435810017 Avg: 0.0389322667231Min: 0.0420480848505 Avg: 0.0427703349887Min: 0.0372236550757 Avg: 0.037868170837Min: 0.0377395589827 Avg: 0.038359797364Min: 0.0379679978597 Avg: 0.0386157753909Min: 0.0372784650747 Avg: 0.0379381589896Min: 0.0372064071739 Avg: 0.0378553575624Min: 0.0373083614378 Avg: 0.0378709036712OverrideMin: 0.037800501569 Avg: 0.0383861023307Min: 0.0381147966683 Avg: 0.0386502098686Min: 0.0416759134584 Avg: 0.042413552558Min: 0.0378257984916 Avg: 0.0382809284584Min: 0.0372857475221 Avg: 0.0379437051483Min: 0.037861827442 Avg: 0.0384288732942Min: 0.0486164691399 Avg: 0.0491892757913Min: 0.0374735580083 Avg: 0.0381609482206Min: 0.0384172098798 Avg: 0.0391263017854Min: 0.0966442098986 Avg: 0.0974336808594Min: 0.0389879237857 Avg: 0.0396646854577Min: 0.0564301519387 Avg: 0.0571267027033Min: 0.0504002854719 Avg: 0.0510688064797Min: 0.0373823357722 Avg: 0.0380252417293Min: 0.051529831396 Avg: 0.0520737803913Min: 0.0373781196184 Avg: 0.0380591894329Min: 0.0500388461077 Avg: 0.0506516065654Min: 0.0524926476027 Avg: 0.0532591941857Min: 0.0440726052342 Avg: 0.044860378235Min: 0.0509936132937 Avg: 0.0515817399147Min: 0.0419304158315 Avg: 0.0426001020309Min: 0.0392964695845 Avg: 0.039921545044Min: 0.0567808592751 Avg: 0.0574272071469Min: 0.0408518470395 Avg: 0.0416132422491Min: 0.212517530576 Avg: 0.213644424156Min: 0.0380212747119 Avg: 0.0386460090463Min: 0.0384969335147 Avg: 0.0389868122543Min: 0.0383861636565 Avg: 0.0389808981404Min: 0.038824260362 Avg: 0.0392678993934Min: 0.0530890417181 Avg: 0.0536448534369Min: 0.0384363742151 Avg: 0.0388679972081Min: 0.147290948723 Avg: 0.148486040507Min: 0.059996251456 Avg: 0.0605789660688Min: 0.0452765087794 Avg: 0.0458976287201Min: 0.0377418587029 Avg: 0.0382561873015Min: 0.0413742668205 Avg: 0.0421806445579Min: 0.0397843935619 Avg: 0.0404878741501Min: 0.0375049875183 Avg: 0.0381875904796Min: 0.0388717879136 Avg: 0.0394372086302Min: 0.0606574210247 Avg: 0.0613276668227Min: 0.0376234231106 Avg: 0.0382515533652Min: 0.0375218521334 Avg: 0.0380483922464Min: 0.0409193054998 Avg: 0.041525534752Min: 0.0580031605822 Avg: 0.0585373089364Min: 0.0443083265587 Avg: 0.0450952065015Min: 0.27980849463 Avg: 0.281293155688Min: 0.0380653526832 Avg: 0.0386503325204Min: 0.0402205738338 Avg: 0.0407253547606Min: 0.040157714814 Avg: 0.0409255914018Min: 0.0376031089151 Avg: 0.038242534629Min: 0.0375609473774 Avg: 0.0381422399965Min: 0.0381067476475 Avg: 0.0386616548097NewMin: 0.0378710263229 Avg: 0.0384417363961Min: 0.0382064021912 Avg: 0.0392334419185Min: 0.041420644512 Avg: 0.0420633856558Min: 0.0376866654171 Avg: 0.0383204721479Min: 0.0374931056305 Avg: 0.0379767521281Min: 0.0378955566722 Avg: 0.0384111156211Min: 0.0461024916318 Avg: 0.0468328866127Min: 0.0375793451393 Avg: 0.0394935172803Min: 0.0383972789709 Avg: 0.0389036505376Min: 0.0857784150558 Avg: 0.0866874676362Min: 0.0387445367271 Avg: 0.0393584508778Min: 0.0521879346711 Avg: 0.0528611279438Min: 0.0482121016645 Avg: 0.0491112117878Min: 0.0374816070291 Avg: 0.0380417307235Min: 0.0487276222847 Avg: 0.0496238424262Min: 0.0373850187792 Avg: 0.0381140070977Min: 0.0480587869819 Avg: 0.0488178288111Min: 0.051205954129 Avg: 0.051859101507Min: 0.043371573848 Avg: 0.0439708349479Min: 0.0492833880091 Avg: 0.0500677689226Min: 0.0414221776588 Avg: 0.042027080739Min: 0.0392290111241 Avg: 0.0398183221011Min: 0.0517567371263 Avg: 0.05242260579Min: 0.0404766093538 Avg: 0.0410370320117Min: 0.144963248554 Avg: 0.145904562377Min: 0.037996361076 Avg: 0.0386819690051Min: 0.0384164433063 Avg: 0.0389502122067Min: 0.0382293993936 Avg: 0.0388769852814Min: 0.0386713289662 Avg: 0.0391981948729Min: 0.0495666368853 Avg: 0.050381975866Min: 0.0383206216296 Avg: 0.0388227847082Min: 0.135501432917 Avg: 0.136477805975Min: 0.0582499972212 Avg: 0.0588257973418Min: 0.0441569283097 Avg: 0.0449071622104Min: 0.0374214310162 Avg: 0.0380600709924Min: 0.0409223717934 Avg: 0.0415110196844Min: 0.0396107646839 Avg: 0.0402162196969Min: 0.0373612550034 Avg: 0.0380350232061Min: 0.0387778826706 Avg: 0.0392696586793Min: 0.0569238252167 Avg: 0.0575293760514Min: 0.0376425874459 Avg: 0.03809943837Min: 0.0374076326949 Avg: 0.0379576759487Min: 0.0407173134055 Avg: 0.041421506907Min: 0.0575022048567 Avg: 0.0581852217678Min: 0.0433577755266 Avg: 0.0440563078835Min: 0.182866854247 Avg: 0.184098730056Min: 0.0379522831048 Avg: 0.038630535762Min: 0.0398491690153 Avg: 0.0405974864824Min: 0.0400327633477 Avg: 0.0405356048437Min: 0.0374122321352 Avg: 0.0380442105884Min: 0.0372976294101 Avg: 0.0379856213825Min: 0.0379243031751 Avg: 0.038495626507Entirely Finished

User avatar
Trent Theriot
 
Posts: 3395
Joined: Sat Oct 13, 2007 3:37 am

Post » Wed Sep 01, 2010 11:24 pm

Here's my result from a test at my home desktop, much better than my laptop.

Profile.txt

Just a lil' bit of a difference there :bigsmile:

Status Update:
The following record types have been fully exposed since the last update:
  • GRAS
  • TREE
  • FLOR
  • FURN
  • WEAP
  • AMMO
  • NPC_
  • CREA
  • LVLC
  • SLGM
  • KEYM
  • ALCH
  • LVLI
  • LVSP
This leaves 13 more record types to expose before the v0.2a release. Unfortunately, some of these last record types are the more troublesome ones. Still, I expect v0.2a to be released Monday or Tuesday evening.

I'd like some feedback on a few design decisions from the technically minded:
  • Right now, CBash reads compressed records, but writes them out uncompressed. When CBash encounters a compressed record, it uncompresses it and resets the IsCompressed record flag. CBash then has no memory of which records were compressed, and which weren't. Since the record flag changed, TES4Edit shows this as a conflict. There are trade offs to consider when using compression. Should CBash bother writing out compressed records? If so, then when? Only when the original record was compressed? When the entire record size exceeds some arbitrary amount (such as when it would require an XXXX subrecord)?
  • What other functions would you like CBash to support besides basic read/write/merging? Some possible examples: move worldspaces, listing all files required by an esp, undeletion & disable, etc. Keep in mind, any function that CBash supports will be available through Wrye Bash once it is hooked in. If there are any esm/esp tasks that you wish you could automate, this would be a good time to speak up.

User avatar
Craig Martin
 
Posts: 3395
Joined: Wed Jun 06, 2007 4:25 pm

Post » Wed Sep 01, 2010 5:43 pm

If there are any esm/esp tasks that you wish you could automate, this would be a good time to speak up.


Well if it is possible to resolve and remove master dependancies. Lets say you want to merge in dlchorse armour AND Unofficial dlc patch, bash shouldn't rely on dlchorsearmour anymore or this merger would obviously be useless. Just my penny for a thought... That way we can merge lets say the entire fcom tree and give all the people that want a single mod file without using bash a single file which they can enable and be done with it.
User avatar
Mark Churchman
 
Posts: 3363
Joined: Sun Aug 05, 2007 5:58 am

Next

Return to IV - Oblivion